Menu
 
Research menu
Jump to menu

Publications:  Dr Andrew Buchan

Buchan AG, Dargaville S, Pain CC(2019). A combined immersed body and adaptive mesh method for simulating neutron transport within complex structures. Annals of Nuclear Energy vol. 134, 88-100.
10.1016/j.anucene.2019.05.044
BUCHAN AG(2019). An angular reduced order model for radiative transfer in non grey media. Journal of Quantitative Spectroscopy and Radiative Transfer
10.1016/j.jqsrt.2019.03.005
Adigun BJ, BUCHAN AG, Adam A, Dargaville S, Goffin MA, Pain CC(2018). A Haar Wavelet Method for Angularly Discretising the Boltzmann Transport Equation. Progress in Nuclear Energy
10.1016/j.pnucene.2018.05.023
Soucasse L, Dargaville S, Buchan AG, Pain CC(2017). A goal-based angular adaptivity method for thermal radiation modelling in non grey media. Journal of Quantitative Spectroscopy and Radiative Transfer vol. 200, 215-224.
10.1016/j.jqsrt.2017.06.015
Adam A, Buchan AG, Piggott MD, Pain CC, Hill J, Goffin MA(2015). Adaptive Haar wavelets for the angular discretisation of spectral wave models. Journal of Computational Physics vol. 305, Article C, 521-538.
10.1016/j.jcp.2015.10.046
Xiao D, Fang F, Buchan AG, Pain CC, Navon IM, Muggeridge A(2015). Non-intrusive reduced order modelling of the Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering vol. 293, Article C, 522-541.
10.1016/j.cma.2015.05.015
Buchan AG, Calloo AA, Goffin MG, Dargaville S, Fang F, Pain CC, Navon IM(2015). A POD reduced order model for resolving angular direction in neutron/photon transport problems. Journal of Computational Physics vol. 296, Article C, 138-157.
10.1016/j.jcp.2015.04.043
Goffin MA, Buchan AG, Dargaville S, Pain CC, Smith PN, Smedley-Stevenson RP(2014). Goal-based angular adaptivity applied to a wavelet-based discretisation of the neutral particle transport equation. Journal of Computational Physics vol. 281, Article C, 1032-1062.
10.1016/j.jcp.2014.10.063
Xiao D, Fang F, Buchan AG, Pain CC, Navon IM, Du J, Hu G(2014). Non-linear model reduction for the Navier–Stokes equations using residual DEIM method. Journal of Computational Physics vol. 263, 1-18.
10.1016/j.jcp.2014.01.011
Return to top